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Abstract. We report a study of the spectrum of scattering resonances in spatially extended open
quantum systems. We consider the Schrödinger equation with a potential composed ofn copies
of a unit cell periodically arranged in a one-dimensional space and vanishing at large distances.
We develop an asymptotic theory which explains the structure of the resonance spectrum. We also
show that, in the limit of a large system, the leading scattering resonances converge to the allowed
energy bands of the infinitely extended periodic system.

1. Introduction

Scattering systems are of great importance in physics and chemistry. In many experimental
situations, the system is probed and studied by the scattering of a beam of particles. In such
scattering experiments, the system properties can be obtained by the measurement of the
differential or total cross sections. In many cases, the cross sections reveal a spectrum of
resonances appearing around certain energies. The resonances are associated with metastable
states for which the beam particle is transiently trapped inside the system for a time duration
called the lifetime [1–7]. The spectrum of the scattering resonances can therefore be used to
characterize the internal dynamics of the system. For instance, in mesoscopic opto-electronic
devices, the scattering resonances give an estimation of the time of relaxation of the circuit after
an optical excitation [8]. In chemical photodissociations, the scattering resonances provide the
unimolecular reaction rates of the molecular system [9,10]. In this context, many recent works
have been devoted to the phenomenon of scattering on a classically chaotic system, notably,
in the semiclassical limit [3, 11,12]. However, these works have remained restricted to small
systems with a few centres of collision localized in a limited spatial region.

Of growing interest is the scattering on spatially extended systems, for which an important
question is to understand how the transport properties like conductance and diffusion are related
to the spectrum of scattering resonances. In this paper, we consider the scattering on one-
dimensional systems where the scatterer is composed ofn copies of a unit cell periodically
arranged (the system is spatially periodic in the strict sense whenn→∞). A linear molecule
or a crystal are examples of such systems in which the unit cell is composed of a single
atom or of a group of atoms. Our purpose is to develop a general asymptotic theory to
construct the spectrum of resonances for such spatially extended systems. We show that the
resonance spectrum displays a remarkable structure which may be regular or irregular. This
structure is in close connection with the energy bands of the infinite periodic system and it
characterizes the dynamics of finite periodic systems in a similar way as the energy bands do
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for the corresponding infinite system. For instance, in the infinite-system limit, the dynamics
can be summarized in the relationvb = 1

h̄

dEn(q)
dq between the group velocity of a wavepacket

and the eigenenergies [13]. On the other hand, for a finite system, the dynamics is governed
by the lifetimes of the scattering resonance spectrum. An important result is that we prove that
the leading scattering resonances converge to the allowed energy bands in the infinite-system
limit.

Moreover, we compare the properties of the lifetimes with those of the Wigner time delay
function, which is a usual tool to obtain dynamical information about a scattering process.
In particular, for systems where the transmission probability is a smooth and slowly varying
function of the wavenumber there is an important lengthening of the quantum lifetimes near
the edges of the energy bands. This lengthening is also observed in the Wigner time delay
function. We also explore the behaviour of both the resonance spectrum and the Wigner time
delay function as a function of the size of the system and of the energy of the scattered particle.

The plan of the paper is the following. In section 2, we summarize the relevant properties
of the scattering resonances. In section 3, we show that the scattering resonances form a
structure in the complex wavenumber plane for a finite periodic potential in one dimension.
We give an analytic asymptotic expression for this structure and we compute the resonance
lifetimes. Also we prove that the resonance structure converges to the allowed energy bands in
the infinite size limit. In section 4, we obtain the Wigner time delay function and we discuss
the effect of the resonances on this quantity. In section 5, we illustrate the results of sections 3
and 4 in simple systems. The conclusion and comments are given in section 6.

2. Scattering resonances

Let us consider the Schrödinger equation with the potential

V (x) =


0 for x < −L
2

f (x) for −L
2 < x < L

2

0 for x > L
2

(1)

wheref (x) is a periodic function of spatial perioda: f (x + a) = f (x),which is prolongated
by a vanishing potential outside the interval−L

2 < x < L
2 with L = an.

Since the potential acts in a finite region, we are here concerned with a scattering system.
In this regard, we notice that the energy spectrum of a scattering system is very different
from the band structure of the infinite system with potentialf (x). For the present scattering
system, the energy spectrum is continuous from zero to infinity with possible eigenenergies
corresponding to the bound states.

However, such a scattering system also sustains decaying processes which are described
in terms of resonances representing the metastable states of the scatterer.

Let us first briefly review the concept of resonance [1–4, 7]. In a scattering system, the
Hamiltonian operator decomposes asH = H0 + V into a free motion part and the interaction
potential. The scattering wavefunction at energyE can be obtained by inverting the Lippmann–
Schwinger equation

|ψ±Ec〉 = |φEc〉 +G(E ± i0)V |φEc〉 (2)

where the statesφEc form a complete set of eigenfunctions ofH0, and whereG(z) = (z−H)−1

is called the resolvent ofH . The scattering states (2) together with the bound states of the
system form a complete basis [2]. It is known that the time evolution of a wavepacket can be
decomposed on the bound states and the scattering states [2,4].

Furthermore, the resolvent operator ofH presents poles in a complex energy surface
formed by two Riemann sheets joined together along a branch cut starting at zero kinetic energy
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E = 0. On one hand, real poles corresponding to the bound states appear on the negative real-
energy axis of the first Riemann sheet. On the other hand, complex poles corresponding to
resonant states appear in the lower half of the second Riemann sheet [7]. The time evolution of
a wavepacket can alternatively be expressed in terms of the resonance poles which contribute
by exponential decays. In this alternative representation, the branch point atE = 0 contributes
by a long-time tail term which may generally be neglected because this contribution is only
important for particles emitted with a very slow velocity which is practically never the case.
The time evolution of the amplitude to detect the wavepacketψt in the stateφd is thus

〈φd |ψt 〉 ≈
∑
r

cre
− iEr

h̄
t +
∑
B

cBe−
iEB
h̄
t (3)

with real and negativeEB and complex

Er = εr − i
0r

2
. (4)

0r is called the width of the resonance. If the detecting stateφd or the prepared stateψ0 have
a negligible overlap with the bound states as in typical scattering processes, the experiment
will only observe the superposition of exponential decays due to the resonances. In the case
where a single resonance is excited we have that|ψt 〉 ∼ e−

iEr
h̄
t , and we see that the probability

density decays as|ψt |2 ∼ e−
0r
h̄
t so that the lifetime of the resonance can be inferred to be

τr = h̄

0r
. (5)

When the asymptotic motion is a free plane wave, the energy is related to the wavenumber
k by

E = h̄2k2

2m
. (6)

Each pole in the Riemann complex-energy surface corresponds to one pole in the complex
wavenumber plane and vice versa according to

εr = h̄2

2m
(Rekr

2 − Im kr
2) (7)

and

0r = −2h̄2

m
Rekr Im kr . (8)

Due to the relation between the resolvent and theS-matrix, poles of the resolvent are
also poles of theS-matrix [3]. Therefore, we can also compute resonances and bound-state
energies from theS-matrix.

3. Resonances of periodic systems

3.1. TheS-matrix

In this section we first obtain theS-matrix in order to calculate the spectrum of the scattering
resonances for one-dimensional finite periodic systems. With this aim, we consider the one-
dimensional stationary Schrödinger equation

− h̄
2

2m
ϕ′′(x) + V (x)ϕ(x) = Eϕ(x) (9)

with a potentialV (x) which is obtained by juxtaposingn ‘unit cells’ of lengtha as discussed
in the introduction. The interaction region has a total lengthL = an.
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The scattering problem is formulated with a method based on a transfer matrix associated
with a ‘unit cell’ of the one-dimensional chain. Such a method has been developed by several
authors [14,15].

We callRj the regionja − a/2 < x < ja + a/2, with j = −(N − 1), . . . , N − 1.
R−N andRN are the external regions, i.e.x ∈ RN if x > (N − 1)a + a/2 andx ∈ R−N if
x < −(N − 1)a − a/2. In the exterior regions the solutions are

ϕk(x) = A−Neikx +A′−Ne−ikx x ∈ R−N (10)

and

ϕk(x) = ANeikx +A′Ne−ikx x ∈ RN. (11)

In the interior regionRj the solution is

ϕk(x) = Ajvk(x − aj) +A′j v
′
k(x − aj) x ∈ Rj (12)

wherevk(x) (resp.v′k(x)) is a solution of (9) withV (x) = V1(x), given by the potential in
the unit cell and zero elsewhere, that matches smoothly with eikx (resp. e−ikx) at the left free
region and with a linear combinationF(k)eikx +G(k)e−ikx (resp.F ′(k)eikx +G′(k)e−ikx) at
the right free region [14, 16]. The solution in the whole space is obtained by matching these
various expressions forϕk atx = ja + a/2 with j = −N, . . . , N − 1.

The procedure is as follows. Remove all but one (thej th) unit cell. Forx < ja − a/2
we have

ϕk(x) = Ajeik(x−aj) +A′je
−ik(x−aj) (13)

and forx > ja + a/2

ϕk(x) = Ãjeik(x−aj) + Ã′je
−ik(x−aj). (14)

By the properties discussed for thevk(x) andv′k(x), we have that:

Ãj = AjF(k) +A′jF
′(k) (15)

Ã′j = AjG(k) +A′jG
′(k). (16)

For a real potential we have that ifϕk(x) is a solution of (9) thenϕ∗k (x) is also a solution.
This implies that

G′(k) = F ∗(k) (17)

F ′(k) = G∗(k) (18)

so (
Ãj

Ã′j

)
= M(k)

(
Aj
A′j

)
(19)

with

M =
(
F(k) G∗(k)
G(k) F ∗(k)

)
(20)

which satisfies

detM = 1 (21)

as a consequence of the probability conservation. Defining the transmission and reflection
probabilities for a ‘unit cell’ as

T1 = 1

|F(k)|2 (22)

R1 = |G(k)|
2

|F(k)|2 (23)
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equation (21) is equivalent to

T1 +R1 = 1. (24)

Note that 06 R1 < 1 and 0< T1 6 1.
At the left-hand end of thej th cell the functionϕk(x) defined in (12) has the same value

and derivative as the superposition of plane waves (13). Similarly at the right-hand end of this
cell it has the same value and derivative as (14). These results enable us to write simply the
matching conditions in the periodic structure.

Noting that the right-hand end of thej th cell is the left-hand end of the (j + 1)th cell, we
have thatÃjeik(x−aj) + Ã′je

−ik(x−aj) has the same value and derivative asAj+1eik(x−a(j+1)) +
A′j+1e

−ik(x−a(j+1)), i.e.(
Aj+1

A′j+1

)
= D(k)

(
Ãj

Ã′j

)
(25)

with

D(k) =
(

eika 0
0 e−ika

)
(26)

and so we get(
Aj+1

A′j+1

)
= D(k)M(k)

(
Aj
A′j

)
. (27)

By iteration along the chain the whole solution is obtained in terms of two arbitrary constants
A−N andA′−N . The coefficient of the two external regionsR−N andRN are thus related by(

AN
A′N

)
= M̃(k)

(
A−N
A′−N

)
(28)

where

M̃(k) =
(

e−ikNa 0
0 eikNa

)
Qn

(
e−ik(N−1)a 0

0 eik(N−1)a

)
(29)

with n = 2N − 1 (the number of cells) and

Q(k) = D(k)M(k) (30)

is the iteration matrix [14]. The diagonal matrices in equation (29) are introduced in order to
use the iteration matrix starting at the left-hand side with the wavefunction (10) and ending at
the right-hand side with (11).

TheS-matrix allows us to calculate the amplitude of the outgoing waves in terms of the
amplitudes of the incoming waves, i.e.(

AN
A′−N

)
= S(k)

(
A−N
A′N

)
. (31)

Using the fact that det̃M(k) = 1 (probability conservation) we get from equation (28)

S(k) = 1

M̃22

(
1 M̃12

−M̃∗12 1

)
(32)

for S.
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3.2. Diagonalization ofQ and the infinite-system properties

In order to computeM̃(k) and thus theS-matrix, we now turn to the diagonalization ofQ(k):

Q = PλP−1 (33)

with

P =
(

Q12 Q12

λ+ −Q11 λ− −Q11

)
(34)

and

λ =
(
λ+ 0
0 λ−

)
. (35)

The eigenvalues ofQ are

λ± = ReQ11±
√
(ReQ11)2 − 1. (36)

As we will frequently refer to the infinite size limit we want to summarize the basic results
concerning the infinite periodic system.

For an infinite periodic system the symmetry with respect to lattice translations implies
the existence of energy bands. According to Bloch’s theorem, the wavefunction satisfies

φ(x + a) = exp(iqa)φ(x) (37)

and the eigenenergiesEn(q) are labelled by the quasi-momentum or Bloch parameterq. This
means that the iteration matrix (30) has eigenvalues (36) of unit modulus [14]

λ± = exp(iqa) (38)

a condition that is satisfied if

(ReQ11)
2 − 1< 0 (39)

as we can see from equation (36). This condition gives the edges of the bandsk±b as solutions
of

ReQ11(k
±
b ) = ±1 (40)

such that|ReQ11(Rek)| < 1 for k±b < Rek < k∓b .
From equations (36) and (38) we see that the Bloch parameterq is related tok by

q(k) = 1

a
arccos ReQ11 (41)

and to the energy byE = h̄2k2

2m . From equation (40) we see that the edges of the band correspond
to q = 0 or q = π

a
. Thus for an infinite periodic system the parameterq takes values in the

interval (0, π
a
) known as the first Brillouin zone. In this interval each energy bandEn(q) is

a univalued function ofq. We notice that the connection between the scattering by a finite
periodic potential and the Bloch parameter has already been discussed in the literature [15,17]

3.3. The scattering resonances

According to (32), we can compute the poles of theS-matrix as zeros ofM̃22 which is the
inverse of the total transmission amplitude, we callt−1

T from now on.
From equations (33)–(35) and equation (29) we get

M̃22 = t−1
T =

exp(ikan)

λ+ − λ− [λn+(λ+ −Q11)− λn−(λ− −Q11)]. (42)
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Let us recall thatn is the number of cells. The resonances are the complex values ofk that
satisfy

λn+(λ+ −Q11) = λn−(λ− −Q11). (43)

We will rewrite equations (42) and (43) for real values ofk that belong to the intervals
k±b < Rek < k∓b and then prolongate it in the complex plane in order to find the resonances.

In those intervals we set

λ± = e±iq(k)a (44)

where we introduce the functionq(k) given in (41) which corresponds to the Bloch parameter
of the infinite system.

From equations (36) and (41)

λ± −Q11 = −i Im Q11± i sinqa. (45)

We note that

ImQ11 =
√
|Q11|2 − (ReQ11)2 (46)

and|Q11|2 is the inverse of the transmission probabilityT1 for the unit cell so that we get

ImQ11 = (sinqa)

√
1 +

R1

T1 sin2 qa
(47)

where we have used the relationR1 + T1 = 1. Equations (45) and (47) give

λ± −Q11 = i(sinqa)

(
−
√

1 +
R1

T1 sin2 qa
± 1

)
. (48)

Replacing (48) and (44) in (42), we get the inverse of the total transmission coefficient as

t−1
T = exp(ikan)

(
cosqan− i

√
1 +

R1

T1 sin2 qa
sinqan

)
. (49)

We can write equation (43) using (48) and (41) and we finally obtain that the resonances
satisfy

e2iqan = 2T1 sin2 qa

R1

(
1 +

√
1 +

R1

T1 sin2 qa
+

R1

2T1 sin2 qa

)
. (50)

This equation is completely equivalent to (43) and it determines the resonances of the system
after prolongation in the complexk-plane. The size of the system, the functionq introduced
in equation (41) and the reflection and transmission probabilities of the unit cell determine this
spectrum and the total transmission coefficient as well. From equation (49) we can see that
the total transmission probability is

TT = |tT |2 = 1

1 + R1 sin2 qan

T1 sin2 qa

.

Accordingly, perfect transmission (TT = 1) occurs wheneverR1 = 0 (T1 = 1), or when
qan = mπ form = 1, 2, . . . , n−1. Therefore, in the general case (R1 6= 1), the transmission
probability hasn − 1 peaks withTT = 1 under each allowed energy band asq increases by
π
a

[15]. Since the peaks in the transmission probability (or in general in the cross section)
are associated with resonances we expect to findn− 1 resonances under each allowed energy
band.
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3.4. The asymptotic resonance band structure

In this section, we turn to an approximate description of this spectrum for high energies. In
the domain of high energies, the reflection probability for one unit cell can be computed from
perturbation theory [18] and gives:

R1(k) ≈ m2

h̄4k2

∣∣∣∣ ∫ +∞

−∞
V1(x) exp(2ikx) dx

∣∣∣∣2. (51)

As a consequence, we observe that this reflection probability decreases as|k| → ∞. Hence,
we can expand equation (50) in powers ofR1 which gives at the leading order

eiqan ≈ ± 2√
R1(k)

sinqa (52)

where the dependence on the wavenumberk appears in the reflection probabilityR1. Now
we will assume thatR1(k) ≈ R1(Rek). This condition is justified by the fact that we are
interested in the leading resonances, which are the closest to the real axis, and that we assume
R1 to be a smooth function ofk.

The functionq(k) takes complex values in the complexk-plane. We define

u = aReq(k) (53)

v = a Im q(k). (54)

After introducing equations (53) and (54) into equation (52) we obtain, from the real and
imaginary parts, two equations:

exp(−nv) cosun = ± 1√
R1(Rek)

sinu coshv (55)

exp(−nv) sinun = ± 1√
R1(Rek)

cosu sinhv. (56)

Adding the squares of equations (55) and (56) we get foru

u = arccos

(
±
√

cosh2 v − R1(Rek)

4
exp(−2nv)

)
. (57)

The signs± come from the fact thatu is a bivalued function ofv in each interval
| cosh2 v − R1

4 e−2nv| < 1. The leading resonances are points on this curve.
To plot the function (57) in thek-plane one has to consider the functionk = k(q) but,

for the high-energy regime that we consider, we can use the results of perturbation theory of
a weak periodic potential [13].

The zeroth-order approximation forEn(q) allows us to consider thatq = |k|mod( π
a
).

The potential produces second-order corrections to the energy away from the band edges.
At the band edges, when Bragg reflection occurs, the corrections are of first-order in the
potential. Therefore, we can expect to have a good approximation to our curve considering
q = |k|mod( π

a
) except at the borders of the structure.

Substituting this approximation in equation (57), we finally obtain the following
approximate expression for the pattern of resonances in one-dimensional periodic systems:

cos2 aRek = cosh2 a Im k − R1(Rek)

4
exp(−2na Im k). (58)

The implicit function Rek = Rek(Im k) defined by equation (58) gives the structure
that the scattering resonances display in the complex wavenumberk-plane in the high-energy
regime.
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We restrict ourselves to the case thatR1 is an almost constant function of Rek in intervals
of the order1k ≈ π

a
. In this case, we can write the explicit function

aRek = arccos

(
±
√

cosh2 a Im k − R1

4
exp(−2na Im k)

)
(mod π). (59)

Our aim is now to obtain the upper and lower envelopes of the resonance structure. The study
of these envelopes give us the dependence of this structure on the size of the system. A very
good expression for the lower envelope can be obtained by evaluating equation (59) at the
valueaRek = π

2 (modπ) which corresponds to the minimum of the curve (see figure 2 of
section 5). We obtain

2√
R1
= exp(−L Im kinf )

cosha Im kinf
. (60)

On the other hand, an approximation for the upper envelope is given by evaluating equation (59)
ataRek = 0 (modπ) which corresponds to a maximum (see figure 2).

2√
R1
= exp(−L Im ksup)

| sinha Im ksup| . (61)

We note that in the previous results (60) and (61), no assumption has been made with respect
to the sizeL.

According to the aforementioned assumption thatR1 is an almost constant over1k ≈ π
a

,
2√
R1

is a smooth and increasing function of Rek and after inversion we get the upper and lower
envelopes. Moreover an expression of Imk in terms of Rek is physically desirable because
Rek is directly related to the band. This kind of expression can be obtained for sufficiently
large values ofn and Rek. We finally obtain

Im kinf ≈ − 1

L
ln

[
2√

R1(Rek)

]
(62)

Im ksup ≈ − 1

L
ln

[
2√

R1(Rek)

a

L

∣∣∣∣ln [ 2√
R1(Rek)

]∣∣∣∣] . (63)

Equation (63) holds under the condition ln( 2√
R1
) ∼ L, which is consistent with the high-energy

domain that we consider.
We see from equation (62) that the imaginary parts of the leading resonances vanish

Im k→ 0 forL→∞. Therefore, in the limitL→∞ we have that

u = aReq(Rek + i Im k)→ aReq(Rek) (64)

v = a Im q(Rek + i Im k)→ a Im q(Rek). (65)

The functionq(Rek) is pure real in intervals of Rek corresponding to the allowed energy bands
where it satisfies 0< q(Rek) < π

a
or pure imaginary in the forbidden bands as can be seen

from equations (36) and (44). From equation (57) we have that 0< u < π
a

which, in the limit
that we consider, means that 0< Req(Rek) < π

a
which implies thatk±b < Rek < k∓b . Since

the functionq(Rek) determines the energy band of the infinite system while the functions
u(k) andv(k) determine the scattering resonances, we have proved that the leading resonances
converge to the allowed energy bands in the infinite-system limitL→∞.

In fact, the function (59) gives the curve of the leading resonances under the band where
R1(Rek) takes the almost constant valueR1. This small-scale structure appears below every
interval of Rek which corresponds to an allowed energy band with possible variations only due
to the slow dependence ofR1(Rek) in this interval. On the other hand, long-scale variations
in the resonance structure are determined by the lower and upper envelopes, (62) and (63).
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3.5. The asymptotic resonance widths

From equations (59) and (8), we can now obtain the values for the decay rates of the leading
resonances in each band. For the high-energy domain ln( 2√

R1
) ∼ L, we get the following

expressions for the decay rate of the resonances located below a band in the corresponding
infinite system:

0(Rek) ≈ 2h̄2

m
(Rek)

1

L
ln

[
2√
R1

sin(aRek)

]
. (66)

This approximation is valid in the bulk of the band but it fails near the edges of the energy
bands where an approximate value for the width is then given by the upper envelope calculated
in equation (63)

0(Rek) ≈ 2h̄2

m
(Rek)

1

L
ln

[
2√
R1

a

L
ln

(
2√
R1

)]
. (67)

Therefore in the limitL→∞ the width of each resonance is inversely proportional to the
size of the system. From equations (66) and (67) we observe that the widths of the resonances
near the edges of the resonance structure are smaller than the width of the resonances in the
bulk giving a lengthening in the lifetimes of the resonances at the edges of the resonance bands.
This lengthening appears also in the Wigner time delay function.

4. Wigner’s time delay

4.1. Connection to theS-matrix

The time delay was introduced by Wigner [5] in the case of a single channel scattering and later
extended to many channels by Smith [6]. Wigner’s derivation uses a wavepacket analysis with
packets of arbitrarily small energy width. The time delay is defined from the phase difference
between the peak of the scattered wave and the peak of a freely propagating one [4]. In the
approach given by Smith, the time delay is the ratio of the excess number of particles due to
the interaction to the incident flux. Smith’s analysis is based on stationary states of the systems
with fixed energy. He constructs a matrixO where each diagonal elementOii corresponds to
the average time delay of an incident particle in thei-channel, where the average is made with
the probability that the outgoing particle is in aj -channel for allj . The trace of this matrix
is the sum of the time delay of all the channels. Thus for a finite number of channels (as in
our case) the total average time delay can be expressed as the trace ofO over the number of
channels. Considering the explicit expression ofO in terms of theS-matrix and the fact that
in our problem there are two channels, the average time delay is

τ(E) = − ih̄

2
tr

d

dE
ln S(E) = − ih̄

2

d

dE
ln detS(E). (68)

In the case of a single channel we recover from this equation Wigner’s result.
It is convenient to define a interaction timeTint (E) by the relation

τ(E) = Tint (E)− Tf ree(E) (69)

where

Tf ree(E) = L

vf ree
(70)

is the time of a free flight at the velocityvf ree = h̄k
m

.
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Using the results of section 3, equation (68) can be written as

τ(E) = −h̄ Im
d

dE
ln t−1

T . (71)

From (42) we have

ln t−1
T = ln

[
λn+(λ+ −Q11)− λn−(λ− −Q11)

(λ+ − λ−)
]

+ ikan. (72)

The term ikan gives the time of free propagation. In fact, this contribution is obtained by

−h̄ Im
d

dE
(ikan) = −Lm

h̄k
= − L

vf ree
= −Tf ree. (73)

The other term in equation (72) gives the interaction time. As we shall see, the behaviour of
this quantity is very different for energies in the allowed or in the forbidden regions.

4.2. Behaviour of the interaction time in the forbidden energy regions

In the forbidden regions,λ+ andλ− are real numbers and can be written asλ± = exp(±κa).
If we write the term inside the square bracket in equation (72) in the polar formρ exp(iθ), the
imaginary part of the logarithm givesθ soTint = −h̄ dθ

dE . Using

λ± −Q11 = −i Im Q11±
√
(ReQ11)2 − 1 (74)

we get

θ = −arctan

[
ImQ11√

(ReQ11)2 − 1

λn+ − λn−
λn+ + λn−

]
. (75)

The last factor is simply tanhanκ and we finally obtain

θ = −arctan

[
ImQ11√

(ReQ11)2 − 1
tanhanκ

]
. (76)

Considering thatQ11 = 1√
T1

exp(iφ)we found that the interaction time in the forbidden regions
is

Tint (E) = h̄ cos2 φ − T1

cos2 φ + sin2 φ tanh2 anκ − T1

d

dE

sinφ√
cos2 φ − T1

tanhanκ. (77)

One can interpretκ as the inverse of the evanescence length of the wavefunctions in
the interaction region when the energy of the incident particle is in a forbidden band. The
characteristic evanescence lengthl of this decay isl ∼ 1

κ
. WhenL = an > l , tanh(Lκ) ∼ 1

andTint (E) is size independent.
WhenL = an < l , tanh(Lκ) ∼ Lκ andTint (E) depends almost linearly on the system

size.

4.3. Behaviour of the interaction time in the allowed energy bands

To compute the interaction time in the allowed energy regions we rewrite the logarithmic term
in a more convenient form:

Tint (E) = −h̄ Im
d

dE

{
ln

[
λn−
(λ− −Q11)

(λ− − λ+)

(
1− λ2n

+
(λ+ −Q11)

(λ− −Q11)

)]}
. (78)
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The quotient(λ−−Q11)

(λ−−λ+)
is real and positive as can be seen from equations (48) and (44) and do

not contribute to the interaction time. The quotient(λ+−Q11)

(λ−−Q11)
is real and of absolute value less

than one. Using equation (44) we have for the interaction time

Tint (E) = −h̄ d

dE

{
−qan + Im ln

[
1− λ2n

+
(λ+ −Q11)

(λ− −Q11)

]}
. (79)

The last term oscillates around zero and has peaks for each resonance. Resonances are also
singularities in the complexk-plane of the time delay. The density of resonances decreases
near the edges of the resonance structure and produces in the time delay the effects of isolated
resonances. In the middle of the band the resonances overlap and give a small and smooth
oscillatory contribution to the time delay. The first term gives the mean value of the interaction
time in the allowed regions. Considering the fact that the velocity of a Bloch quasi-particle is
vb = 1

h̄
dE
dq , the interaction time for the allowed energies is

Tint = L

vb
+ tf l (80)

wheretf l is the contribution of the fluctuating part.
Generically, near the edges of the energy bandsvb << 1, then the interaction time is

longer for energies near the edges of the allowed energy bands.

4.4. Behaviour of the interaction time in large systems

For large systems thetransmissionprobability approaches the unit value in the allowed region
so that we can identify the interaction time with the time of propagation in the interaction region.
This is confirmed by equation (80) considering that, in the infinite system, the propagation
is carried out exactly with the velocityvb. On the other hand, in the forbidden regions, the
reflectionprobability approaches the unit value so that the interaction time in that region should
be interpreted as the time to be reflected. Intuitively, a reflected particle does not explore the
complete system so it is not surprising that this time is size independent. We want to emphasize
that no approximation has been made in this section. The system size, the energy and the shape
of the potential in the unit cell are arbitrary, but for small systems whenL→ 0, the oscillatory
termtf l is dominant andL

vb
is no longer the average value of equation (80).

5. Applications to simple models

5.1. The finite Kronig–Penney model

We consider the potential

V (x) = V0

N∑
j=−N

δ(x − aj). (81)

The total transmission probability of this system has been studied in detail [15,19].
We are here interested in the dynamical properties as characterized by the scattering

resonances and the Wigner time delay. Figure 1 depicts a part of the wavenumber complex
plane with the resonances forn = 50 and a zoom on the leading resonances forn = 100 for
this system, wheren = 2N + 1 is the total number of barriers.

We notice that equation (81) is the potential of the Kronig–Penney model in the limit
N →∞. In this case the Bloch parameterq is related to the wavenumberk by

cosqa = coska +
α

k
sinka (82)
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(a)

(b)

Figure 1. (a) The resonances of the finite Kronig–Penney model withn = 50 unit cells in a part of
the complex wavenumberk-plane. (b) Zoom on the leading resonances at small Rek for n = 100.
The resonances are below the bands of the Kronig–Penney model. Here, we have takenα = a = 1.

whereα = mV0

h̄2 .
The reflection probability for a single barrier is

R1 = α2

k2 + α2
. (83)

For largek we have

R1 = α2

k2
(84)

which coincides with the result obtained using equation (51). HereR1 is a smooth varying
function ofk, as we assumed in section 3. IfV0 is positive the allowed bands end at values of
the wavenumberk which are multiples ofπ

a
. To obtain the value ofR1 that characterizes the

band we evaluateR1 atk = pπ

a
. The predicted curve of resonances under thepth band is

Rek − πp
a
= 1

a
arccos

±√cosh2 a Im k − α
2

4

a2

(pπ)2
exp(−2an Im k)

 . (85)

In figure 2 we observe the nice fit of this curve with the resonances of the corresponding
interval for the Kronig–Penney model.
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Figure 2. Resonances of the Kronig–Penney model composed ofn = 50 cells. The resonances
are plotted in the interval(p − 1)π < Rek < pπ with p = 63 together with the inverse function
of (85). Here alsoα = a = 1. We can here clearly observe that the number of resonances below
the band isn− 1. They are associated to then− 1 peaks in the transmission probability.

The envelopes obtained from equations (60) and (61)

Rek|inf = α

2

exp−L Im k

cosha Im k
(86)

Rek|sup = α

2

exp−L Im k

| sinha Im k| (87)

are depicted in figure 3 together with the resonances, which confirms the global behaviour of
the resonance spectrum predicted by our asymptotic theory.

For this system we have also computed the interaction timeTint (E). Figure 4 depicts
Tint (E) together with the smooth term in equation (80) and the interaction time obtained by
equation (77) in the limit of large systems. The figure clearly shows the lengthening of the
Wigner time delay near the edges of the band predicted by equation (80).

The linear dependence on the system size in the allowed energy regions and the
independence with respect to the size in the forbidden bands for large systems is shown in
figure 5 which depicts the Wigner time delay for two chains of different sizes.

5.2. Finite sequence of potential barriers

Here the potential in the unit cell is given by

V1(x) =


0 for − a
2 < x < − l

2

V0 for − l
2 < x < l

2

0 for l
2 < x < a

2.
(88)

We notice that the total transmission probability for the finite sequence of barriers have been
analysed in [15,19]. The Bloch parameterq of the infinite system and the wavenumberk are
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Figure 3. Resonances of the Kronig–Penney model composed ofn = 50 unit cells withα = 1 for
large values of Rek, with the envelopes given by (86) and (87).

Figure 4. Interaction timeTint (E) computed numerically from the Wigner time delay function for
the Kronig–Penney model withn = 50 andα = 1 (heavy curve). In the allowed energy regions,
the smooth (light) curve is〈Tint (E)〉 = L

vb
as given by equation (80). In the forbidden regions, the

exact curve almost coincides with the approximation (light curve) obtained for large systems by
equation (77).

related by

cosqa = cosk′l cosk(a − l)− k
2 + k′2

2kk′
sink′l sink(a − l) (89)

with k′ =
√
k2 − k2

0 andk0 =
√

2mV0

h̄2 . The reflection probability is

R1 = k4
0 sin2 k′l

4k2k′2(cos2 k′l + (k2+k′2)2
4k2k′2 sin2 k′l)

. (90)
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Figure 5. For n = 50 andn = 100, interaction timeTint (E) of the Kronig–Penney model with
α = 1. This figure clearly shows that the interaction time is proportional to the lengthL in the
allowed energy bands and that it is independent ofL in the forbidden energy regions.

Whenk′ → k, this reflection probability tends to the value predicted by equation (51):

R1 = k4
0 sin2 kl

4k4
. (91)

Accordingly, we observe that the reflection probability has variations in an interval1k = π
l
,

which is larger than the approximate sizeπ
a

of the allowed energy bands.
Whenπ

l
� π

a
,R1 can be considered as an almost constant function in most intervals of the

order π
a

. In this case, the resonances under the intervals of Rek corresponding to the allowed
energy regions are given by the expression in equation (59) and the envelopes are given by
equations (62) and (63), which gives the large-scale structure of the resonances for wavelength
scales of the orderπ

l
. This case is illustrated in figure 6 wherea = 1 andl = 0.0971. Note

thatR1 has zeros at Rek = nπ
l

where the envelopes diverge.
Whenπ

l
is of the same order asπ

a
, we cannot considerR1 to be an almost constant function

in the energy band region and the analysis done after equation (58) is not strictly applicable.
As an example, we considerl = 1 anda = 1+

√
5

2 . The resonances are plotted in figure 7. We
can see that the resonances form a quasiperiodic structure in this case. We can interpret this
structure as follows by using our results. The envelopes (62) and (63) of the structure here
vary with a wavelength scale given byπ

l
which is incommensurate with the wavelength scale

π
a

of the band structure of the infinite system. This incommensurability creates the observed
irregular behaviour.

6. Conclusion and comments

In this paper, we have studied in detail the resonance spectrum of a periodic scattering system.
We have shown that this spectrum presents remarkable structures for which we have obtained
an analytic expression at large energies. We have proved that the spectrum of scattering
resonances presents a kind of band structure which converges to the allowed energy bands of
the infinite periodic system in the limit of an infinite scatterer. This study shows that the widths
of the resonances slowly increase with their energy and decreases like the inverse power of
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Figure 6. Resonances of a periodic potential composed ofn = 40 unit cells as given by

equation (88) witha = 1 andl = 0.0971 andk0 =
√

2
l
. The solid curves are the envelopes

obtained with equations (62) and (63). The vertical lines indicate the forbidden regions which are
very thin in this energy regime.

Figure 7. Resonances of a periodic potential composed ofn = 40 unit cells as given by

equation (88) witha = 1+
√

5
2 andl = 1. The vertical lines indicate the forbidden regions which

are very thin in this energy regime.

the size giving lifetimes proportional to the size of the system. This result is confirmed by the
interaction time obtained in equation (80).

In systems where the reflection probability changes slowly with the wavenumber, we have
shown that we should expectn− 1 resonances just below each allowed energy band in a finite
system composed ofn unit cells. Moreover, the metastable states with energies near the edges
of the energy bands have longer lifetimes than the metastable states with energies in the bulk
of the bands: see equations (59), (66) and (67). This can be understood as an effect of the
slow propagation velocityvb = 1

h̄
dE
dq of Bloch quasi-particles with energies near the edges of

the bands in the corresponding infinite system. This fact is expressed for finite systems by the
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Figure 8. Resonances of the Kronig–Penney potential in equation (81) forn = 30, 50, 90 unit
cells. We observe the convergence of the resonance spectrum toward the band structure on the real
wavenumber axis whenL→∞.

increase of the interaction time given by equation (80).
We have also shown that the resonance structure may become irregular already for certain

one-dimensional systems characterized by two incommensurate lengths. In this case, our
analysis provides the asymptotic behaviour of the domains of complex wavenumbers where
the resonance spectrum fluctuates.

Our study leads up to the following general comments on the properties of scattering
resonances in spatially extended systems:

(1) As we have mentioned before, the energy spectrum of the scattering system composed
of a finite numbern of cells is continuous on the real positive energy axis. However, these
continuous energies correspond to waves scattered in the system from outside, whereas the
internal and decay dynamics is controlled by the resonance spectrum. As the system becomes
infinite (n → ∞), the potential fills the whole space and the scattering from outside is no
longer possible. Therefore, the aforementioned continuous spectrum no longer appears in
the description of the infinite system. On the other hand, the resonance spectrum remains
essentially determined by the internal dynamics when the system becomes spatially extended.
In the same limit (n→∞), we can thus understand that it is precisely the resonance spectrum
which converges to the spectrum of energy bands. Indeed, our results show that the number
of resonances increases indefinitely (because the number of resonances isn − 1 inside each
band as seen in figure 2) while they accumulate on the real energy-axis because their lifetime
becomes infinite (see figure 8).

The above picture of the evolution of the resonances (or generalized spectrum [7]) is
valid for unit cell potentials with well or barrier shapes. A potential composed of barriers can
be transformed, by adding a constant energy potential in the exterior region, into a potential
composed of wells. Obviously, both potentials have a band structure in the limitn → ∞.
Nevertheless, in textbooks of quantum mechanics, the second case is most often considered
because it allows bound states so that the formation of the bands can be understood as an
accumulation of the discrete energy eigenvalues of these bounds states in some intervals in the
infinite-system limit. Here, we have presented the complementary scheme in which the band
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structure is generated by the scattering resonances.
(2) We have here considered an ideal coupling to the external regions. One can consider

more general couplings by multiplying the matrix̃M at the left-hand side and at the right-
hand side by another matrixM representing, for instance, two barriers. For large systems
this will modify the resonance curve by a term proportional to the square root of the reflection
probabilities of the new barriers (assumed to be small) and inversely proportional to the system
size.

(3) Finally, concerning the time delay and its identification with a transmission time in
the allowed energy regions, we would like to mention that several propositions for a traversal
time exist in the literature. In fact the problem to get a suitable definition for such a quantity
is not completely solved and the most common approaches have been critically reviewed by
Landauer and Martin [20].
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